
Projects Completed Successfully

Engineering – Capability

Codes and Standards

- American Standards: ASME
 Sec. VIII Div I, II, III
- European Standards: EN 13445
- British Standards: BS PD 5500
- German Standards: AD Merkblätter
- Russian Standards: GOST
- Australian Standards: AS
- Indian Standards: IS
- DIN
- AD 2000
- API 650, API 620
- UL-142, UL-58

Software Capabilities

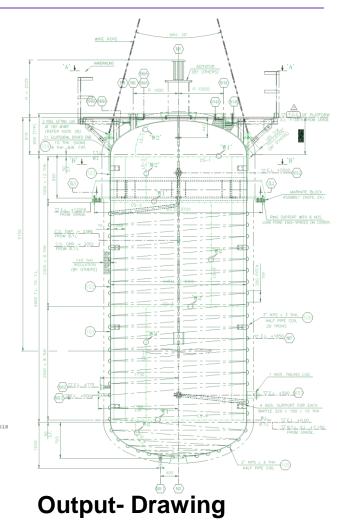
- PV Elite 2018
- Ansys R19
- CAESER-II
- SOLIDWORKS
- STAAD Pro V8i
- Nozzle Pro
- Auto CAD 2019

- Scope:
 - Static design as per ASME section VIII div-I \checkmark
- Application: Pretreatment Vessel for Chemical Plant
- Size: ID 3000 mm
- Pressure: 3 bar at 350 deg C
- **Deliverables:**
 - Design calculation report \checkmark
 - Manufacturing drawing \checkmark
- Software Used: PV Elite

	npu	t Data
	- 0	PERATING AND DESIGN DATA
	UNITS	
	Vert. / Horiz.	Vertical
ent		Vessel-Crude PA , Nozz. Jacket-SL /SM Stear
teristics		Vessel-(Organic Acids), Nozz. Jacket- None, L
nts		No
de.		NO

Inp	JU	t Data
-	0	PERATING AND DESIGN DATA
	UNITS	
	Vert. / Horiz.	Vertical
		Vessel-Crude PA , Nozz. Jacket-SL /SM Steam,

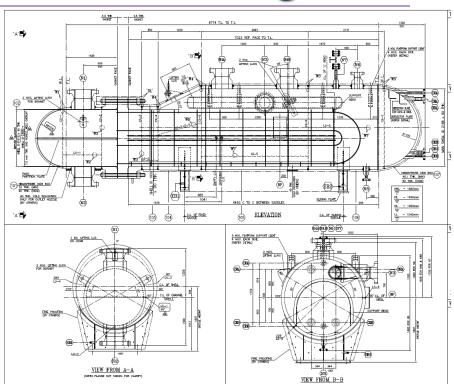
		UNITS		3	
Туре		Vert. / Horiz.	Vertical	4	
Operating Fluid	Content		Vessel-Crude PA , Nozz. Jacket-SL /SM Steam, Limpet Coil- Terminol 66	5	
Fluid /Content C	haracteristics		Vessel-(Organic Acids), Nozz. Jacket- None, Limpet Coll- None		
Additional Requi	rements		No	7	
Statutory Requir	rements		NO	8	1
Design Code	"U" Stamp		ASME Sec VIII Div 1 2015 Edition with latest Errata No	9	1
Operating Temp	erature	°C	Vessel-280 Nozz. Jacket-165 / 204 Limpet Coil- 320	10	
Operating Press	ure	bar(a)	Vessel-1.05 Nozz. Jacket-7 / 16 Lipmet Coil- 5	11	
Max. Operating	Static Head	m	5.4 from bottom tan line.	12	
Density of Opera	ating Fluid	kg/m ³	Vessel-1062 Nozz. Jacket Limpet Coil	13	
Internal Design F	Pressure	barg	Vessel-3 Nozz. Jacket-10 / 22 Limpet Coil- 10	14	
External Design	Pressure	barg	FV for Nozzle Jacket	15	
Design Tempera	iture	°C	Vessel-350 Nozz. Jacket-200 / 230 Lipmet Coil- 350	16	
Min. Design Met	al Temperature	°C	10	17	
Max. Allowable \	Working Pressure	barg		18	
Is designed for *	STEAM OUT" condition ?	Yes/ No	No	19	
if "YES" Steam 1	Temperature	°C		20	
Steam pressure		barg		21	
Is NACE Code A	Applicable ?	Yes/ No	No	22	
Hydrostatic test	pressure (Shop / Site)	barg	As per code	23	
Corrosion Allow	ance	mm	NIL	24	1
Corrosion Allow	ance on internals	mm	0	25	
Post Weld Heat	Treatment	Yes/ No	As per code	26	
Radiography Sh	nell / Dished end / Cone		Shell-Spot / Head - 100%	27	1
Joint Efficiency	Shell /Dished end / Cone		0.85 / 1.0	28	
Wind Design Co	de		IS-875 Part 3 (Ed. 2015) Amd-1	29	
trans besign co	nany .		Vb=44 m/s; k1=1.0; k2=Table-2 of IS:875(Part 3) for Terrain categ-3;k3=1.0,k4=1	30	
Colorado Decimo	0.4		IS-1893 Part 1 -6th Edition 2016, Part 4 2015, Importance Factor 1.5, Category 2,	31	
Seismic Design Code			Zone III, Zone Factor Z = 0.16, R = 2.0, Soil Type = Type II (Medium Soil), I/R ratio shall be 1	32	


Output- PV Elite

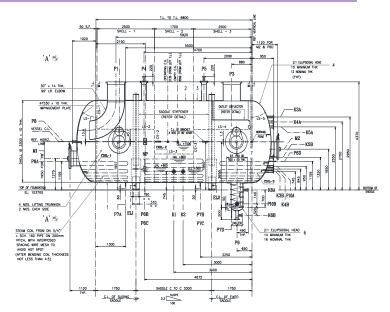
PROJECT - IGPL PA-IV/MA-4 PROJECT DATA SHEET No. 1922-402-04-F441D-A4-101 REV. 1 4TH PRETREATMENT VESSEL (TAG No. F-441D) Licensee: P.E.D.CONSULTANTS PV Elite 2016 SP1 FileName : F-D441 REV Input Echo 8:36pm Dec 26,2018 Step: 1

PV Elite Vessel Analysis Program: Input Data

PROJECT - IGPL PA-IV/MA-4 PROJECT DATA SHEET No. 1922-402-04-F441D-A4-101 REV. 1 4TH PRETREATMENT VESSEL (TAG No. F-441D)


Design Internal Pressure (for Hydrotest) Design Internal Temperature		0.3000	MP 9C
Type of Hydrotest	UG-99(b)	Note [36]	0
Hydrotest Position	(/	Vertical	
Projection of Nozzle from Vessel Top		550.00	mm
Projection of Nozzle from Vessel Bottom		80,000	mm
Minimum Design Metal Temperature		10	°C
Type of Construction		Welded	
Special Service		None	
Degree of Radiography		RT-4	
Use Higher Longitudinal Stresses (Flag)		Y	
Select t for Internal Pressure (Flag)		N	
Select t for External Pressure (Flag)		N	
Select t for Axial Stress (Flag)		N	
Select Location for Stiff. Rings (Flag)		N	
Consider Vortex Shedding		N	
Perform a Corroded Hydrotest		Y	
Is this a Heat Exchanger		No	
User Defined Hydro. Press. (Used if > 0)		0.0000	MP
User defined MAWP		0.0000	MP
		~ ~ ~ ~ ~ ~	100

Design – Shell & Tube Heat Exchanger


- Scope: Design Of Shell and Tube Heat Exchanger as per ASME section VIII div-2
- Application: Propane Chiller For Oil & Gas Industry
- Size: 967 Sq. Mtr
- Pressure: 120 bar at 110 deg C (Shell & tube side)
- Deliverables:
 - ✓ Design calculation report
 - Manufacturing drawing
- Software Used: PV Elite

Input Data Controlling case hell-and-tube heat exchange Case EMA type SKETCH PROCESSIDAT Tube side ame of fluid Propan Wet Ga 4N (7N (4N) Fluid flow rate total 30.729 121.84 liquid in Łou kgłs .63 30.729 119.51 9.10 121.39 vapour in 7 out 29.4 emperature in/ essure at inle 96 0 essure dror oaloulated / allowed calculated (17)? allowed (18 10,05/(9 10.15/(9) locity (SN Im coefficient (₩/m².K 0.00023 uling resistance (1 m²K/W 0.00018 Wet cas channel inlet CN1 A/B LIC Wet gas channel outlet CN2 A/B LSHH Propane mixed phase inlet CN3 A/B LEVEL GAUGE werage wall temperature of shell / tube Total heat dute kW Thermosunkon reboiler: Static head from N4A/B Propage vanour outlet ffective temp, differ quid level to bottom tube sheet/shell Drainage Dverall coefficient clean (2 W / m².K Kettle: Minimum hold up capacit Depressurization conne erall coefficient fouled (2) denser: Number of tubes subr Vent (with ball valve and blind otal number of shell stal required surface per 1 Film operficients and for fing resistance are related to their own surface Total effective surface of unit m² 2) Overall coefficients are related to the outer diameter of the tubes nnected in series in parallel ifective surface per skell 3) Due to piping and safety requirements exchanger will be elevated \$ CONSTRUCTION DATA PER SHELL neter above ground level 4) Design codes: ISO 16812 + DEP Shell inside diameter 31,21,01,30-Gen + TEMA-R + ASME Sec umber of passes shell sid Sundle dia.(outer tube limi) Div. 2 • DEP 31,22,00,31-Gen Baffle type Jumber of passes tube sid affle orientati 5) Material selected as per DEP 31,21,01,30-Ger uter baffle out Gasket selected as per DEP 3121.01.30-Gen mber of tub Type of tube Baffle spacing ce All the wetted parts (tube side) shall be suitable for Sour Service application & shall be in compliance with "NACE MR 0175 / ISD-15156 /SP-2041". In addition, all pressure ube OD (plain affle spacing in taining carbon steel materials shall be supplied in no Tube wall thicknes: 2 14 mm 8) Earthing boss in accordance with STD-4-0304-001 Baffle thickness Tube length (straigh 6100 ber of cross passe: Tube pitch umber of pairs of sealing strips Tube lay-out angl 30 / 45 / 60 / Estimated mass ner she 82300 94350 21100 NOZZLE DATA Bundle only 16" (N4 A/B) 20" (N1 12" (N3) Nozzle DN 20" (N2 7 24 6.99 8 57 7.61 Velocity

Output- Drawing

- Scope:
 - ✓ Static design as per ASME section VIII div-I
- Application: Flare KO Drum
- Size: ID 3300 mm
- Pressure: 3.5 bar at 350 deg C
- Deliverables:
 - ✓ Design calculation report
 - Manufacturing drawing
- Software Used: PV Elite

Input Data

			DESIGN DAT	Α.	
INSTALLATION	OUT	DOOR	CODES ASME SECT. VI	DN. 1, 2015 Ed. + P	ROJ. SPECIFICATIONS
ASHE STANP				YES	
			VESSEL	JACKET	COIL (SEE NOTE "N")
QUANTITY			1		
CAPACITY		m ²	68	/	(*)
	HAME		NTROGEN+HYDROCARBONS	/	LLP STEAM
CONTAINED FLUE	PHYSICAL 8	INE	VAPOUR/LIQUID	/	VAPOUR/LIQUID
CONTINUE FLOG	DENSITY	kg/m ²	1.31/630.8	/	1000
			240		000
SEMICE	VET H25/C	R (HACE)/ ICUC/OTHERS	N/A	/	N/A
		1st. cond.	350	/	270
	DESIGN	2nd. cond.	u – / /		180
TEMPERATURE 'C (SEE NOTE ''M'')		3rd. cord.	-	/	-
que none e y	OPERATING		86	/	180
MINING CENTRA NETAL TEMPE	ATHE DEEN	one "P") "C	-29	/	-29
		1st. cond.	3.5	/	5.5
PRESSURE for (a)	DESIGN	Stei, cord.	-	/	FULL VACUUM
PRESSURE INF (g) (SEE NOTE "K, W")		3rd. cond.	-	/	-
	OPERATING		0.09+0.345	/	3.5
HYDROTEST PRESSURE		ter (g)	ACCORDING TO CODE	/	ACCORDING TO CODE
PRELAWING TEST PRESSURE 60° (g)		-	/	-	
CORROSION ALLOWANCE (SEE NOTE "O") mm			3	/	3
POSTMELO HEAT TREATMENT		NONE	/	NONE	
RADIOGRAPHY			SPOT	/	SPOT
WELDING EFFICIENCY			0.85	/	0.85
INSULATION TYPE/THK. PP / 65 (SEE NOTE "L") INT PROVIDENCE (YES) (HOLD)					

Output- PV Elite

PV Elite Vessel Analysis Program: Input Data

Low pressure pe flare ko drum Tag No 9133

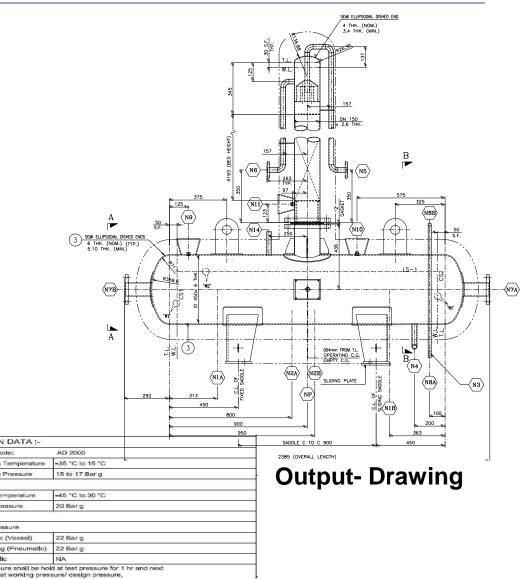
Design Internal Pressure (for Hydrotest)	0.3500
Design Internal Temperature	350
Type of Hydrotest	UG-99 (b)
Hydrotest Position	Horizontal
Projection of Nozzle from Vessel Top	0.0000
Projection of Nozzle from Vessel Bottom	0.0000
Minimum Design Metal Temperature	-29
	Welded
Type of Construction	
Special Service	Air/Water/Steam
Degree of Radiography	RT-4
Use Higher Longitudinal Stresses (Flag)	Y
Select t for Internal Pressure (Flag)	N
Select t for External Pressure (Flag)	N
Select t for Axial Stress (Flag)	N
Select Location for Stiff. Rings (Flag)	N
Consider Vortex Shedding	N
Perform a Corroded Hydrotest	Y
Is this a Heat Exchanger	No
User Defined Hydro. Press. (Used if > 0)	0.0000
User defined MAWP	0.0000
User defined MAPnc	0.0000
_	

Output- Drawing

MPa °C

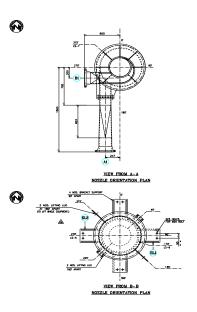
mm mm °C

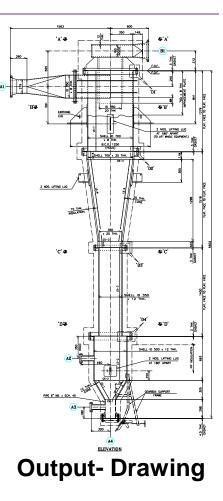
MPa MPa MPa


Spot 10%

NI

- Scope:
 - ✓ Static design as per AD 2000
- Application: CO2 Rectifier-Reboiler
- Size: ID 450 mm
- Pressure: 20 bar at 30 deg C
- **Deliverables:**
 - Design calculation report \checkmark
 - Manufacturing drawing \checkmark
- Software Used: NA


Output Calculation Data


	Design Data	ee.			
Construction Code	AD 2000 MERK	BLATT (ED. SEP	TEMBER 2016)	Clause	
PED categories	IV	SEP			
PED module	G	19435			
Fluid type / Group	Gas / 2				
Pressure X Volume (Bar X L)	6660				
Stress category	1			Clause 3, W10	
Test Group	6			Table 1a, HPO	
Material sub group	8.1		17.8	Table 1a, HPO	
Type of Vessel	Horizontal			-	
	Shell	Coil	1	1 0	
Internal Design Pressure	20	20	Bar(g)		
Design Temperature for Internal Pressure	30	30	°C	2	DESIGN DATA :-
External Design Pressure	NA	NA	Bar(g)		
Operating Pressure (Min / Max)	15 to 17	15 to 17	Bar(g)		Design Code:
Operating Temperature (Min / Max)	-35 to 15	-35 to 15	°C		Operating Temperature
Minimum Design Metal Temperature	-45	-45	°c		
MAWP (Same as design pressure)	20	20	Bar(g)		Operating Pressure
Pnumatic Test Pressure at the top of Vessel	28.6	28.6	Bar(g)	Caluse 4.17, HP 0	10 ⁻
Corrosion allowance	Nil				
Radiography Marking	Spot			Table 1b, HP 0	Design Temperature
Joint Efficiency	0.85			Table 1b, HP 0	Design Pressure
Specific Gravity of Content	Negligible				
Service	CO2 Gas				
Test Media	Air				* Test Pressure
Empty / Operating Weight	505		Kg		
Test Weight	505		Kg		Pneumatic (Vessel)
Post Weld Heat Treatment	No			Table '1b', HP 0	Coll testing (Pneumatic)
Post Forming Heat treatment	No			Clause 2.2.3, HP 7/3	** Hydraullo
Impact Test	No			Table 1, W10	
Shell Inside Diameter	450		mm		* - Pressure shall be hold
Shell Length (WL- WL)	1800		mm		8 hrs at working press
Vessel Volume	312	6.2	liters		** - NA.
Wind data				errain Category-O)	Radlography
Siesmic data	G Loading, I = 1	25, Gx=Gy=Gz=0	0.07	14210000	Corrosion Allowance
Inspection opening requirement	Yes		Table	'1',A5 & Appe. A5	Contosion Allowande

Design – Cyclone Separator

- Scope:
 - ✓ Static design as per ASME section VIII div-I
 - ✓ FE Analysis
- Application: Decoke Cyclone
- Size: ID 700 mm
- Pressure: 0.5 bar at 320 deg C
- Deliverables:
 - ✓ Design calculation report
 - ✓ Manufacturing drawing
- Software Used: PV-Elite, Ansys

Input Data

[DESI	GN DATA	
DESIGN CODE : ASNES	ECT. VIII	(V.1 (only design & calculation)	
INSPECTION BY : RELI	ANCE /	TPB AND/OR NOMINEE	
REGULATION : -		\$	
WIND CODE : IND[AN STAN	DARD IS875 (PART 3) 1987	
EARTHQUAKE CODE : IS18	93 (PAR	T 4) Z	
SERVICE		DECOKE CYCLONE }	
FLUID		STEAM / AIR / SOLIDS	
OPERATING PRESSURE	kg/cm ² g	(See Note 1. from PDS) 🔇	
OPERATING TEMPERATURE	Deg C	(See Note 1, from PDS)	
FLUID DENSITY	en 55	(See PDS)	
DESIGN PRESSURE	kg/cm ² g	0.5 + FULL OF WATER	
AT DESIGN TEMPERATURE	Deg C	320	
EXT. DESIGN PRESSURE	kg/cm ² g		
AT DESIGN TEMPERATURE	Deg C		
M.D.M.T AT DESIGN PRES	Deg C	7.5	
INTERNAL CORROSION	mm	(See Note 13. from PDS)	
JOINT EFFICIENCY		0.85	
STRESS RELIEVED		PER CODE	
RADIOGRAPHIC EXAMINATI	DN	SPDT	
SHOP TEST PRESSURE	kg/cm ² g	PER CODE & SPEC.	
PAINTING / PAINTING AREA	- / m2	PER SPEC. / *	
INSULATION THICKNESS	mm	PER SPEC. (Note 10. from PDS)	
CAPACITY	mЗ	LATER	
CODE STAMP		NO	
NO. OF ITEMS		1	

Output- PV Elite

PV Elite Vessel Analysis Program: Input Data

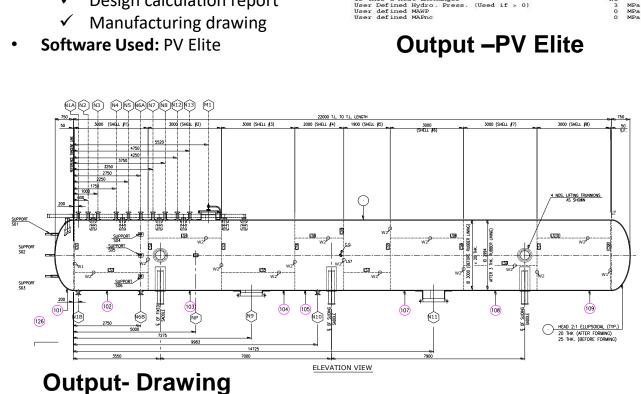
Design Internal Pressure (for Hydrotest)	0.1079	MPa
Design Internal Temperature	320	°C
Type of Hydrotest	UG-99(b) Note [36]	
Hydrotest Position	Vertical	
Projection of Nozzle from Vessel Top	0.000	nmı
Projection of Nozzle from Vessel Bottom	0.0000	สายสา
Minimum Design Metal Temperature	8	°C
Type of Construction	Press. Welded	
Special Service	Air/Water/Steam	
Degree of Radiography	RT-3	
Use Higher Longitudinal Stresses (Flag)	Y	
Select t for Internal Pressure (Flag)	N	
Select t for External Pressure (Flag)	N	
Select t for Axial Stress (Flag)	N	
Select Location for Stiff. Rings (Flag)	N	
Consider Vortex Shedding	Y	
Perform a Corroded Hydrotest	Y	
Is this a Heat Exchanger	No	
User Defined Hydro. Press. (Used if > 0)	0.000.0	MPa
User defined MAWP	0.04903	MPa
User defined MAPnc	0.0000	MPa

Scope:

 \checkmark

Deliverables:

 \checkmark


Static design as per PD 5500

Size: ID 3000 mm X Length 22000 mm

Design calculation report

Application: Surge Vessel

Pressure: 20 bar at 50 deg C

v	Elite	Vessel	Analysis	Program:	Input Data

: WATER SECURITY MEGA RESERVOIRS PACKAGE B PRPS 2 Project Project Code : GTC 626/2014 SURGE VESSEL DIA. 3000 x 22000 LG.

MPa

50 °C

> 0 וחוח

n **mm**1 °C

0

N

No

з

0

Design Internal Pressure (for Hydrotest) Design Internal Temperature Hydrotest Position Projection of Nozzle from Vessel Top Horizontal Projection of Nozzle from Vessel Bottom Minimum Design Metal Temperature (Flag) Use Higher Longitudinal Stresses Select t for Internal Pressure (Flag) Select t for External Pressure (Flag) Select t for Axial Stress (Flag) Consider Vortex Shedding Perform a Corroded Hydrotest Is this a Heat Exchanger User Defined Hydro. Press. (Used if > 0) Heer defined MAWP User defined MAPnc

l			Ę	DESIGN DATA	
COMIS	TRUCTION COD	E		PD 3500 : EDMON 2015	
ÐKQU	RY CASES			5500/82, 5500/91	
CERT	FICADON NARK	1]	NOT APPLICABLE	
NATIO	NAL BOARD RE	ESTRATION		NOT REQUIRED	
NAN	FACTURER SER	WAL NO.		REFER NOTE 7	
ICP	NULTER			N-KON / CLIENT	
EMI	NOT No.			58241-9/1, 55241-9/2, 95241-9/3, 55241-9/4	
				55242-5/1, 55242-5/2, 55242-5/3, 55242-5/4	
108	Na.			X00061CA-SE-101	
	DESIGN (INT)	/D/T)	NPa	20 / 0.055	
1	OPERATING (NT/DIT)	NPa	0.53 / NA	
w	HIDROTEST A	T TOP OF VESSEL	NPa	3.0	
TESSUR				USER DEFINED TEST PRESSURE GREATER THAN PRESSURE AS	PER SUB-1
Æ	NAME (INTER	IVAL) (HOT & CORPODED)	NPa	2.0 0 50°C (SAVE AS DESIGN PRESSURE)	
	NAMP (DITE)	444L)	NPa	0.055 @ 50°C (SAME AS DESIGN PRESSURE)	
뷛	DESIGN (NT/DO)	.6	50 / -	3.2.4
FEMALE	OPERATING (WXX/WN)	.6	TBA	
E	NONT		'C	0 °C @ 20 NPa	328
NETA	L TENPERATURS	E DURING HYDROTEST	.c	NOT LESS THAN 17 & NOT BE MORE THAN 48	
OPER	ATING MEDIUM	1		WATER	
CAPN	CITY (FULL / 1	NORKING)	Cu m	162.60 / 151	
NEDI	IN DEDISTLY	Ke/	Gu m	1000	
CORR	SOUN ALLOWAR	KE (NT/EXT)	(mm)	S/NL (INTERNALLY RUBBER LINED - 3 THK EPON)	332 & 35
CONS	TRUCTION CATA	NEORY		CATEGORY 2	3.4.1
2022	10000	LOWB SEAN		SPOT 105 + ALL 'T' JOINTS	WELEL4-
RACK	CRAPHY	CIRC. SEAM		SPOT 1005 + ALL '1' JOINTS	0.64.2
		LONG SEAN		NOT APPLICABLE	
Cent	DRODICY	CRC. SEAM		NOT APPLICABLE	
PMHT	ŭ.		-	EQUIPTED	4.4.3.1
INPA	T TEALING		-	EXEMPTED	ANNED: D
SPEC	AL SERVICE			ю	
INSPE	TTOM OPENIK	S REDURENENT		YES (PROVIDED WOZZLE NH)	
UNIN	1040			85-6360 PMPT 2, 1987, DESIGN WIND SPEED 160 HII/Hr.	95 29.1.2
SEISI	AC LOAD		-	ASCE 7:2010, Se-0.00, S1-0.045, 1-1.00, STE CLASS : 0	1
INSTA	LIATION			HORIZONTAL	321
INSUL	ATION	TYPE	/ THK	KA	17
AREP	ROOFING	TYPE	/ THK	KA	IJ
LINDA	O TEST POSITIO	W		HORIZCATAL	r

Input Data

Design – Shell & Tube Heat Exchanger

- Scope: Design Of Shell and Tube Heat Exchanger as per ASME section VIII div-1
- **Application:** Wash Water Heater
- Size: 42.9 KW
- **Pressure:** 19 bar at 150 deg C (Shell & tube side)
- **Deliverables:**
 - Design calculation report \checkmark
 - Manufacturing drawing
- Software Used: PV Flite

V Elite Vessel Analysis Program: Input Data

Wash Water Heaters 02-01-E-1231/1241 A/B Roy 2

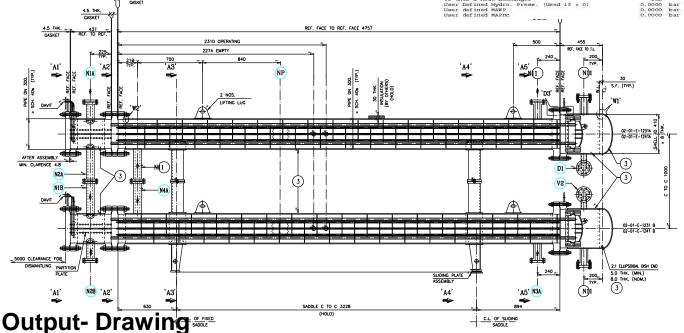
Exchanger Design Pressures and Temperatures

Shell Side Design Pressure Channel Side Design Pressure Shell Side Design Temperature Channel Side Design Temperature

90 90

UG-99(c)

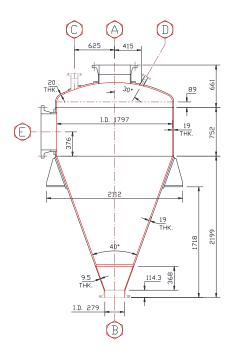
Welded

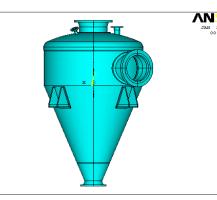

RT-1

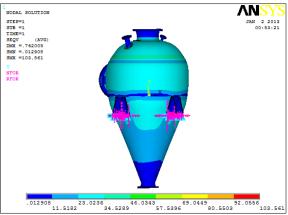
Yes

Horizontal 0.0000 0.0000

Input Data


FEA – Fatigue Analysis Of Iron Ore Bin


- Scope:
 - ✓ Static design as per ASME section VIII div-I
 - ✓ Fatigue life evaluation for pressure fluctuation as per ASME section VIII div-II


VOLUMES

TYPE NUM

- Application: Blast furnace
- Deliverables:
 - ✓ Design calculation report
 - ✓ Fatigue analysis report [
 - ✓ Manufacturing drawing
- Software Used: Ansys

Document No.: PED/FEA/2012-13/WELMON/001 Rev. 1 Sheet: 19 of 31

Document Title .: FATIGUE ANALYSIS REPORT OF IRON ORE PRESSURIZED BINS

And the Stress factor used to compute X = $Y = \left(\frac{S_a}{C_{us}}\right) \cdot \left(\frac{E_{FC}}{E_T}\right)$

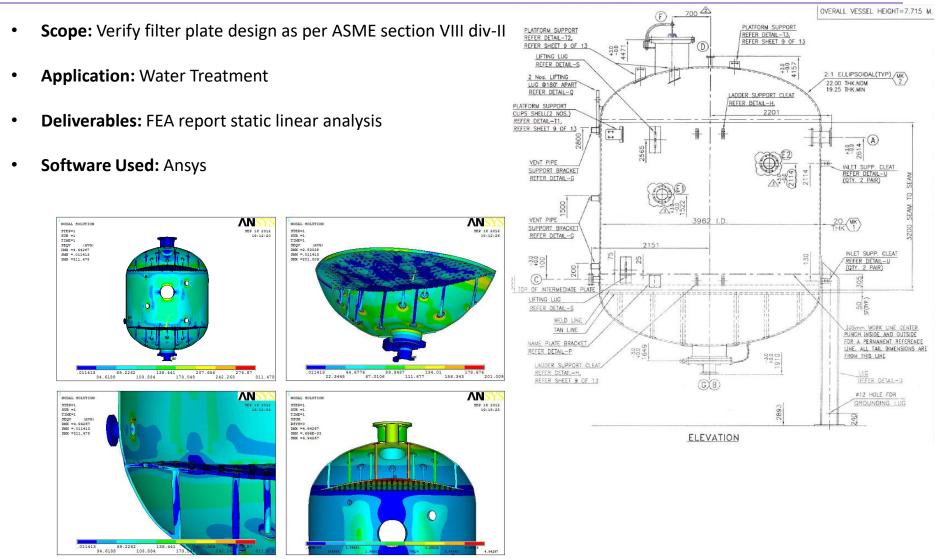
= (77.67075 / 6.894757) * (195000 / 200133)

= 10.9762614

Exponent used to calculate permissible number of cycles = X =

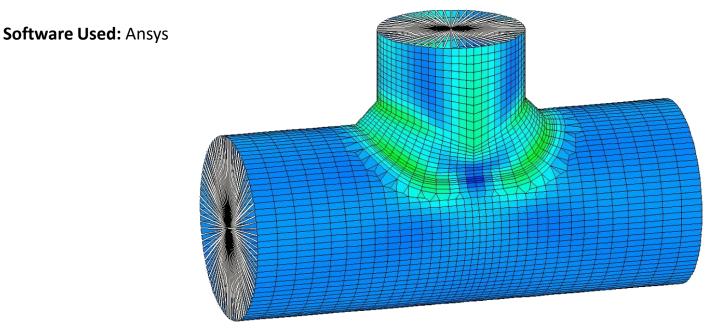
$$Y = \frac{C_1 + C_3 Y + C_5 Y^2 + C_7 Y^3 + C_9 Y^4 + C_{11} Y^3}{1 + C_2 Y + C_4 Y^2 + C_6 Y^3 + C_8 Y^4 + C_{10} Y^5}$$

X = 7.10594

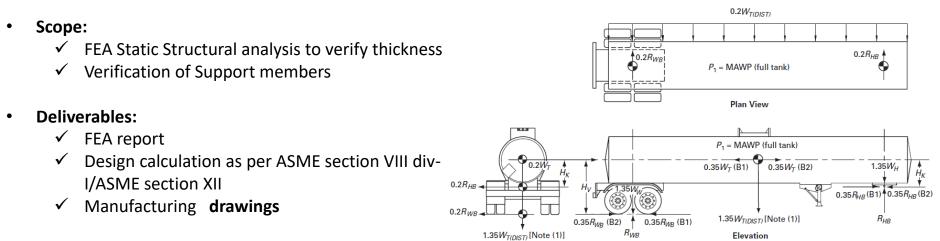

JAN 2 2013

Calculated using C1 - C11 coefficients listed in table 3.F.2 listed below -

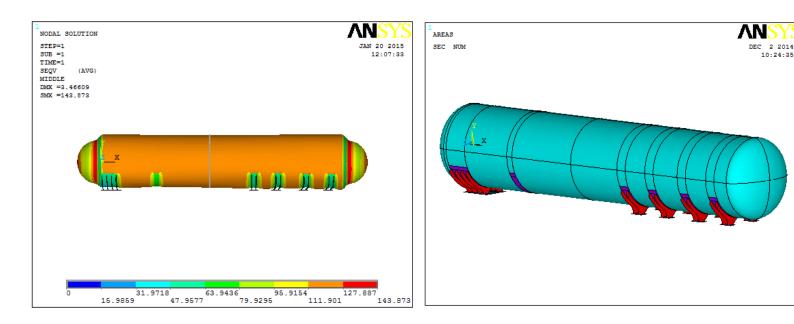
Coefficients	$77.2 \le S_a \le 296 (MPa)$
C_i	$11.2 \le S_a \le 43 (ksi)$
1	1.608291E+01
2	-4.113828E-02
3	-1.023740E+00
4	3.544068E-05
5	2.896256E-02
6	1.826072E-04
7	3.863423E-04
8	0.0
9	0.0
10	0.0
11	0.0

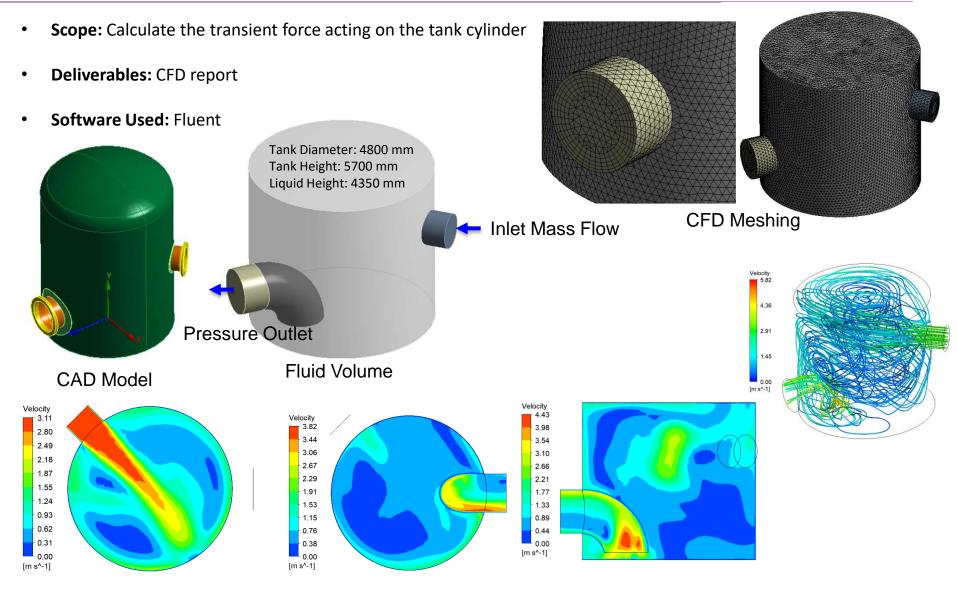

The Number of allowable fatigue cycles N = 10x = 107.10594= 12,762,624

FEA – Analysis Of Vessel



FEA – Piping Analysis


- Scope:
 - ✓ Analysis of piping joints for thermal loads.
 - ✓ Structural & transient analysis
- Deliverables:
 - ✓ FEA report as per ASME section VIII div-II,
 - ✓ Design calculations as per ASME section VIII div-I,
 - ✓ Manufacturing drawings


FEA – Cargo Vessel LPG Bullet

• Software Used: Ansys

CFD – Cooling Tower Buffer Tank

